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We assume momentarily that the faces of both polyhedra are triangles

and, if they are not ,tha t we shall triangulate both polyhedra . Notice that

itt the tr iangulated polyhedra the number of faces remains less than

twice the number n of vertices and the number of edges remains less than

three times t , so they both remain 0(n). Each pseudo-vertex p ’ in ~ is

the intersection of two edges e’ E E’ and e ’ E E ’ and is therefore shareda I b S

by four regions itt G*; the union of these four regions is referred to as

the crown of p’ and is the locus of the points which can be reached from p ’

without crossing any edge. Notice that e’ is shared by two t r iangular

faces of G2, who se union is a quadrila teral region ; a similar remark holds

for e~ . Thus the crown is the intersection of these two quadrilateral

regions, and the crown boundary contains either 8, or 10, or 12 pseudo-

vertices (see f igure 4 a, b, c, respectively) . The fact  that the number

of crown vertices is bounded is a consequence of the hypothesis that the

polyhedra have been triangulated .

(a) (b) (c)

Figure 4. Illustration of the possible cases for the crown of a pseudo-
vertex.

Given any pseudo-vertex p ’ as the intersection of e~ and e~, the pairs

of triangles bordering these two edges cart be obtained in constant time

-
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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from the doubly-connected edge lists describing 2 and P respectively. Once

these triangles are available , the pseudo-vertices in the crown can also be

obtai ned i~ time bounded by a constant , and so can their values of ¶ .  We

now give the

Advanc ing ste p of the wandering a lgor i thm:  A pointer is moved from the

current pseudo-vertex p ’ to a pseudo-vertex p” which a t tains the minimum

value of among al l  pseudo-vertices in the crown of p ’.

Of course, the step is voided and the algorithm terminates if p ’

attains the minimum value of 5 along the ed ges e~ and e~ intersecting

in p ’ : in this case if S is positive the two polyhedra do not intersect

(case (iii) in Section 5). In the other case (5 decreases either along

e~ or e.) the advancing step is effected, and in ac tua l practice can be

carried out without exploring the entire crown of p ’, but simply following

a path of edges along which 8 decreases.

An additiona l algorithm simplification is that, as we shall show ,

polyhedra I and S need not be triangulated before applying the wandering

algorithm. In fact, only those faces of Ga. and will be triangulated

which are actually traversed by the wandering algorithm. Specifically, let

p’. the intersection of e~ and e,~, be the current pseudo-vertex (see Figure 5 ) .

Referring for simplicity only to polyhedron I, let f
1 

and f
2 be the two

faces of C1 sharing e~ . Itt the doub ly connected edge list of G
~ 

we can

Figure 5. Partial triangulation of ~~.

- -  
5 _- 5~~~~~~~ --~~~~~~~~~~~~~~~ --~~~~~ - 
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obtain in constant time the edges e~ and e~’ which follow e~ itt the edge-sequences

of f
1 

and f 2, respectively . If f
1 
is not a triangle , we connect the non-

overlapping ex tremes of e~ and e~ , and we do likewise for f2. The

introduction of any such new edge in the doubly-connec ted edge list requires

the modification of two pointers and the use of two other calls for con-

struction of the appropriate record . All this can also be done in constant

time. We conjecture that this insertion is not really necessary, but the

present proo f on the time perfo rmance of the algorithm depends upon it.

Since the wandering algorithm moves from p ’ to p” only if 5(p”) <

it is obvious that the algorithm will terminate at a point p such that

is the minimum value of 5 for all pseudo-vertices in ~~. Even though

the total number of pseudo-vertices in P. could be 0(ti2) ,  we shall now prove

that the number of advancing steps is at most 0(n).
,1 - 

Recall  that for an edge a in either or min (e)  denotes the minimum

value of S on e. Let pseudo-vertex p ’ be the intersection of e~ E E~, and

e~ ~ E,~ ; we now define m (p ’)  * max(m in ( e ’ ) , min (e~ )’i .  Clearly 5 ( p ’) � m ’(p).
- 

Lenzna 1: Let p ’ be a pseudo-vertex in s~; if m (p ’~ = 
~- ( p ) ,  then

3(p ’) m (p’) =

Proof: Let us assume the contrary and obtain a contradiction. In figure 6

let a ’ and b ’ represent minimum points on e ’ and e~ respectively which are

nearest to p ’. ~y our assumption, 8(a’) 
z 5(b’ )  — and hence by

convexity, every point along the line segment L between a~ and b ’ also has

this same 8 value. Let a1 be the pseudo-vertex closest to a’ in the portion

of e~ between a’ and p ’ (possib ly, a1 and p ’ coincide). The Line segment L

crosses a region of G* bordering with a’a
1
. Since the value of S is linear

within this region and it achieves the minimum value 5(p ) at an interior
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a ’

‘
a

p 1/

a ’ — 
— 

—

Figure 6. Illustration for the proof of m(p ’) — S (p~) 8(p ’) — m (p’).

point, it must have this value throughout the entire region. Hence,

8(a1) — 5
~~m~’ 

contradicting our assumption that a’ is the neares t minimum

point to p ’ on e~. This proves 8(p’) —

Assuming now that 5(p ’) > 5
~
Pm~ ’ 

we see by Lemma 1 that m (p’) > S (p ) When

the wandering algorithm is applied at p ’, it steps to a new pseudo-vertex p”.

Lemma 2: m (p”) <

Proof: We distinguish two cases:

(1) p’ and p” do not belong to the same edge. Let p ’ be the inter-

section of a’ and e.g, and let p” be the intersection of e” and ej~ (see

figure 7(a)). Let be the pseudo-vertex in ~ defined above .

We claim tha t a straight line from to p” cannot intersect the interior

of the region f of G* to whose boundary p ’ and p” belong, except at p”.

In fact, if it did, any such point of intersection would, by convexity,

•

1~
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a’

minimum
~~~~~~~~~~
HT

rI,Point of a~
/ 

~~~~~~~~~~~~~~~~~~~~~~ o f e ~ 

/

/

(a) (b)

Figure 7. Illustration of the proof that tn (p ”) <

have a value of 6 as low as ô(p”). Since p” is a minimum point of f, this

• . would imply that all the points of f have the same value of 8, contradicting

6(p ’) > 6(p ”). As a consequence, either e~ or e~ separates ~m 
from p ’,so

• ~m 
belongs to the shaded regions in figure 7(a).

Assume , without loss of generality, tha t p ’ , and hence e~ , is separa ted

• from p by e~. Then, since e~ does not cross e~ in ~~~, the straight line

between p and the minimum point of e~ intersects a~ in a point a”. By

convexity, min(e~) � 6(a ”), with equality occurring only if min (e~) — 5(p).

Assuming equali ty, since we have seen that m (p’) > 8
~~m~ 

and we have

min(e~) — 6(a”) — min(.~) - 6(p ), we obtain m(p ’) > min(e~). Assuming instead

that szin(.~) > 6(a ”)~ since by definition m (p’) � min(e~) and 8(a”) ~

we also obtain m (p’) > miu (e”).

Two subcases must be considered. First, assume p ’, and hence e~ , is also

sepa rated from 
~m by e~ . Then by art identical argument m (p’) > min(e~), so

) m(p”) — max (mLn(a~) , znin(ej)). Second , assume it is not , as shown in

figure 7(a) . We now show that min (e~) ~ min(e~) thus reaching the same conclusion. 

-5 - 5- -- -5 
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In fact, since S ( p”) is the minimum value in f, the minim point on

e” occurs either at p” or along a” on the opposite side of p” from f. A

straight line drawn between this minimum point and p intersects ej at a

point b” such that 8(b”) � inin(e~) ,  by the convexity argument used earlier.

But 8(b”) � min(ej)1 whence min(e~) � min(e~) ,  as claimed.

(2) p’ and p” belong to the same edge. Without loss of generality, let

p ’ be the intersection of a’ and e~1 and let p” be the intersection of e” and

e~ (see figure 
7(b)). By the convexity argument, e’ is separated from

~~ 
by e~ (i.e., 

~m 
belongs to the shaded region) . As in case (1) , we

can show that rn(p’) � min(e’) > min(e~). To prove that min(e~ ) � min (e~)

we note that the minimum point of a” must be p”, for otherwise p” would not

attain the minimum of 3 itt the crown of p .  Thus

m(p ”) = tnax(min(e”), min (e~)) min(e”) < m (p ’) ,  as clauned .O

Theorem: The number of advancing steps performed by the wandering

algorithm is 0(n).

Proof: We have shown that as the wandering algorithm moves from one

pseudo-vertex p ’ to the next, the value of m (p’) decreases at each

step. Each value of m(p ’) is the minimum value of one of the edges in

E,!. U E,. Hence, the number of distinct values which m(p’) can assume

is no greater than + IE,~l, which is 0(n). The number of steps

taken by the algo rithm there fore is 0(n) .O

Since the time taken by the wandering algorithm is 0(n), the time

taken by the entire algorithm remains 0(nlogrt).

1~

- 
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5. An Application: Finding a Separating Plane

The preceding method can be used to solve efficiently the important problem

of linear separability in three dimensions, i.e., testing whether two finite sets

of points A and B are separable by means of a plane, and, if so, f inding one

such plane.

Since two finite sets of points are linearly separable if and only if their

convex hulls do not intersect [83, we begin by obtaining the respective convex

hulls of the sets A and B by means of the Preparata-Rong algorithm [33. Letting

lA l + I B I  — n this task, which is completed in time O(nlogn), yields two

convex polyhedra Cl and ~ such that fv~ + n. We now apply to a’ and ~&

the algorithm described in Section 4: any time the algorithm declares that Cl

and ,& do not intersect, we construct a separating plane.

We now recall that C and ~& are found to be disjoint in three exclusive

cases , already referred to it~ Section 4;

(i) after projecting R(Q) and R(i~) on the plane (x1,x2), the polygons

Cl* and i~~’ are disjoint; 
-

(ii) after evaluating 6 at all true vertices of G* we find that

6(v*) — mm 6(v) > 0 and v* is an absolute minimum;
v E U V~

(iii) after applying the wandering algorithm we find that 
~~~~ 

> o•
In case (1.) it is sufficient to find a straight line L separating

Qk and ~~~~~ , since a plane containing L and perpendicular to the plane (x1,x2)

separates C and &. The line L can be found in time 0(n) by an obvious

• modification of the Preparata-Rong algorithm for planar convex hulls (C3],p. 90).

Cases (Li) and (iii) can be handled jointly by the following considerations.

Rather than constructing one separating plane, we cons truct a locus of separating
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planes and make a selection in this locus. Let u be the point at which the

algorithm terminates with the result that C and 8 do not intersect; obviously,

either u — v* or u — p .  Also let u’ and u” be the pre-iniages of u (with

respect to x3-projection) in C and t9,respecttvely. Assume at firs t that

u — v* and , without loss of generali ty, let u ’ be a vertex (in Va). Consider the

cycle F of ~.-e faces sharing u ’; for each f E F, imagine app lying the vector

(n
1
(f) ,n

2
(f) ,n~3(f) ) — n(f) to the origin; recall that n(f) is normal to f and

pointing toward the exterior of C. Then the set of directions ~~(f) I~ E F)

def ines a convex cone C~ such that any direction internal to it is normal to

a supporting plane of C. Notice now that, when u — 
~m’ 

point u’ belongs to some

edge ca of ~7 and C~ degenerates into a plane wedge delimited by the normals to

the two faces of C which share e~.

For u” the convex cone C8 is analogously def ined , with the only modification

that the directions of the vectors n(f) are reversed • The cone can assume the follow-

ing forms : if u — v*, then C8 is either nondegenerate, or a plane wedge, or

a half-line, depending upon whether u” in 8 is either a vertex,or a point in an

edge, or a point in a face, respectively ; if u — 
~m’ 

then C8 is a plane wedge.

The solution to our prob l~~ is C~, fl C8. Notice , however, that this

intersection consists of a single ray in the following two cases: (1) u —

in which case they ray is the co~~~n normal to the edges which contain ii ’ and u”

in C and 8, respectively; (2) u — v* and u” is a point in a face of 8, in which

case the ray is the normal to this face. In the resataing cases (u — v*, u’ is

a vertex, and u” is either a vertex or a point in an edge) we fi rs t find a

plane which intersect.s C~ in a bounded polygon; this can be done in time

0(n) as follows , For each face f E F , let point t ( f)  be the terminus of

the vec tor n(t). Let f1 and f2 be two consecutive faces in the cycle F.

We consider the set of planes determined by triples of points (t(f1).t(f2)t(f~)) 

- - • - - —-----
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with j ,~ 1,2 and f~ E F. For each such plane, we call positive the half -

plane bounded by the straight line £ through t ( f 1) and t ( f 2 ) and containing

t(f~). The half-planes of this set have line £ in common and are comprised

between two extreme ones , one of which intersects all the edges of C
~
:

the latter defines our desired plane. Next we intersect C8 with this plane and

obtain either a polygon or a straight-line sa~ nent: in any case the problem is

reduced to finding the intersection of two plane polygons , which can be solved

in time 0(n) [ii. This enables us to find a vector orthogonal to a

separating plane; the construction is completed by requiring that the plane

contain a point internal to the segment u’u”.

Thus, we conclude that the construction of a separating plane of two

three-dimensional sets of points, if it exists, can be effected in time

0(nlogn).

_ _ _
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Appendix

As we said in Section 2, the vertex-to-edge list of a planar graph

is a collection of edge lists, referred to as input edge lists, stored

in arrays H[l:n], VERTEX[l:2n), and NEXTC1:2n). In the DCEL, we can

identify n cycles of edges around a vertex, called vertex cycles, and

f cycles of edges around a face, called face cycles. The construction of

the DCEL is carried out in two phases. In the first phase, we fill the

arrays Vl, V2, P1, and P2 , hereby constructing the vertex cycles . In the

second phase we generate the names of the faces and fill the arrays Fl and

F2 , hereby cons tructing the face cycles .

Informally, phase-l of the algorithm works as follows. The input

edge i~ ts are scanned one at a time, in the order v ,v2,...,v .  While

scanning the input edge list of V
j 
an edge (vj~

vi) is entered into the DCE L

only if i > j: in this manner we ensure that each edge is entered only once.

Thus any edge (vj~
vh) with h < j is already present in the DCEL, since it

was entered while scanning the input edge list of Vh, earlier in the —

execution of the algorithm. All that is needed now is therefore the

realization of the appropriate linking of such (vJ)vh) into its position

in the vertex cycle of v • To effect it we must determine the location of

(vj$vh) in the DcEL. This can be done as follows,with additional storage

0(n). Suppose that, while scanning the input edge list of Vh, the edge

(vh~vj) is to be entered (obviously h < j). This edge is linked permanently

into the vertex cycle of vh and temporarily into a list of edges of the

form 
~~r’~j~ ’ 

with r < j. The members of the latter list referred to as

the temporary list of are linked in reverse order to that of their

occurrence during the execution of the algorithm. Thus this List can be managed 
—
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with only one pointer stored in an array LAST[1:a]. With these provisions,

the location of (v
h~
v
j
) is easily obtained: in fact, prior to linking the

vertex-cycle of V
j 

we scan the temporary list of V
j 
starting from LAST[J)

and store the location of (vh,vJ
) into cell BCh3 of an auxiliary array

B[l:n). Notice that the latter array is only scratch memory and will be

used repeatedly for each vj. Therefore the additional storage needed consists

of the arrays LAST and B, both of size 0(n), and of program variables

a1, a0, u, t, r, 2.

We can now give the algorithm.

CO?~ TRUC T VER TEX CYCLES

1. ~~~~~ a ’-l

2. for J .- ~ ~~~~ 
1. until n do L&ST[J] - A (Coument: initialize LAST)

3. for j -l~~~!p l untilndo

4. be&in £ - LAST[J)

5. While £~~~Ado

6. begin p - Vl[L]

7.

8. £.- P2[L]
p

end

Coument: Loop 5-8 fetches the locations of all

edges (v ,v
1

) with r < j by scanning the temporary

list of V
3 
and stores them into the array B. This

step is obviously void for 3 — 1.

9. t ’- Hfj ],

10. r ‘- VEm~EX[t)

- -
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11. Ifr> jth e n

12. begin Vl[a] 3, V2[a] — r

13. HV[J] a0 a, u ‘- 1

14. P2[a] LASTEr]

15. LASTEr) - a

16. a’- a+l

end Cosment:Steps 10-15 initialize the vertex cycle for V
3

17. elseRV [j J -a 0 - B[r) , u 2

Co ent: Steps 8-17 process the first member (Vr~
vj)

of the input edge list of v
3
. If this edge was not 

—

previously encountered steps 11-16 are executed;

specifically, the edge is entered in step 12. Variable

a0 is used to denote the location of the last member

of the vertex cycle being constructed.

18. While ~EXTEt) i’ ii[j] do

19. begin t - NEX TEt]

20. r - V E R T E X E t )

21. If r > j  then

22. begin ViCa] 3, V2[a] r

• 23. P2[a] LASTEr)

24. LASTEr] 4- Pu[a
0
) a,

25. a0 — a , u - 1

26. a a+l

- 1~ _else
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27. be~~~ puEa0) — BEd

28. a0 BE d, u — 2

end

end

29. pu1a0) RVEJ)

end

end

Coument: Steps 18-29 complete the construction of the vertex

cycle for v
3
. Specifically, loop 18-28 successively processes

the edges incident on v
3 

and either enters them into the vertex

cycle (Steps 21-26) or simply links them into it (Steps 27-28).

Step 29 closes the vertex cycle.

To evaluate the running time of the algorithm just described, notice

that each edge is processed exactly twice: once to be entered into a vertex ; 

j
cycle and into a temporary list, the second time to be linked appropriately.

Both these operations take constant time, and since the number n of edges is

0(n) , 0(n) time is used to fill the arrays VI, V2, P1, and P2.

To complete the construction of the DCEL we must construct the face

cycles. The next algorithm, CONSTRUCT FACE CYCLES , starts from the partial

DCEL which is produced by the CONSTRUCT VERTEX CYCLES procedure. The algorithm 
- 

-

will scan the DCEL, using an integer a as a counter. If FlEa] and F2[a] have

already been filled,it advances to the subsequent edge; otherwise it generates

the name of new face (using a counter s) and traces the edges enclosing it

filling the appropriate P—fields. The algorithm terminates when 2in

filling operations have been performed: an integer k is used to control

this event. 
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CONSTRUCT FACE CYCLES

1. begin for 3 — I ~~~~ 1 until m do FlEji 4- F2Ej) ‘- A

2. a - s ~~- k - 1

3. Whi le k ~ 2m do

4. If Fl[a] ,~ A and F2[a) ~L A then a — a+l

5. else ~~~~ If FlEa] — A then u I else u — 2

6. Fufa] s , c — Vu[a), ar(s) a0 a , k - k#1

7. a ’- Pu(a) —

8. While a~~~a0 do

9. begin If Vl[a) — c then u 2 else u ~~
- 1

10. Fu[a) — s , c — vu[a), k k+l

II. a ’— Pu{a]

12. s’- s+l

end

end

end

Since in the latter algorithm each field FlEa] or F2[a) is being

processed at most twice (once to be filled in steps 6 or 10, and possibly

once to be just inspected in step 4), the running time is 0(n) . This and

the analogous result for the vertex cycle algori thm substantiate our claim

that the DCEL can be obtained in time 0(n) from the original vertex-to-edge

list.
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